5 research outputs found

    Sustainability of bioenergy – Mapping the risks & benefits to inform future bioenergy systems

    Get PDF
    Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding ‘credit’ across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability

    Cell Penetrating Peptides: How Do They Do It?

    No full text
    Cell penetrating peptides consist of short sequences of amino acids containing a large net positive charge that are able to penetrate almost any cell, carrying with them relatively large cargoes such as proteins, oligonucleotides, and drugs. During the 10 years since their discovery, the question of how they manage to translocate across the membrane has remained unanswered. The main discussion has been centered on whether they follow an energy-independent or an energy-dependent pathway. Recently, we have discovered the possibility of an energy-independent pathway that challenges fundamental concepts associated with protein-membrane interactions (Herce and Garcia, PNAS, 104: 20805 (2007) [1]). It involves the translocation of charged residues across the hydrophobic core of the membrane and the passive diffusion of these highly charged peptides across the membrane through the formation of aqueous toroidal pores. The aim of this review is to discuss the details of the mechanism and interpret some experimental results consistent with this view

    The Medicinal Chemistry of Tuberculosis Chemotherapy

    No full text
    corecore